Recent Advancements and Challenges of Turkic Central Asian Language Processing

Authors: Yana Veitsman, Mareike Hartmann

License: CC BY 4.0

Abstract: Research in NLP for Central Asian Turkic languages - Kazakh, Uzbek, Kyrgyz, and Turkmen - faces typical low-resource language challenges like data scarcity, limited linguistic resources and technology development. However, recent advancements have included the collection of language-specific datasets and the development of models for downstream tasks. Thus, this paper aims to summarize recent progress and identify future research directions. It provides a high-level overview of each language's linguistic features, the current technology landscape, the application of transfer learning from higher-resource languages, and the availability of labeled and unlabeled data. By outlining the current state, we hope to inspire and facilitate future research.

Submitted to arXiv on 06 Jul. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.