QMViT: A Mushroom is worth 16x16 Words
Authors: Siddhant Dutta, Hemant Singh, Kalpita Shankhdhar, Sridhar Iyer
Abstract: Consuming poisonous mushrooms can have severe health consequences, even resulting in fatality and accurately distinguishing edible from toxic mushroom varieties remains a significant challenge in ensuring food safety. So, it's crucial to distinguish between edible and poisonous mushrooms within the existing species. This is essential due to the significant demand for mushrooms in people's daily meals and their potential contributions to medical science. This work presents a novel Quantum Vision Transformer architecture that leverages quantum computing to enhance mushroom classification performance. By implementing specialized quantum self-attention mechanisms using Variational Quantum Circuits, the proposed architecture achieved 92.33% and 99.24% accuracy based on their category and their edibility respectively. This demonstrates the success of the proposed architecture in reducing false negatives for toxic mushrooms, thus ensuring food safety. Our research highlights the potential of QMViT for improving mushroom classification as a whole.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.