KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics
Authors: Benjamin C. Koenig, Suyong Kim, Sili Deng
Abstract: Kolmogorov-Arnold networks (KANs) as an alternative to multi-layer perceptrons (MLPs) are a recent development demonstrating strong potential for data-driven modeling. This work applies KANs as the backbone of a neural ordinary differential equation (ODE) framework, generalizing their use to the time-dependent and temporal grid-sensitive cases often seen in dynamical systems and scientific machine learning applications. The proposed KAN-ODEs retain the flexible dynamical system modeling framework of Neural ODEs while leveraging the many benefits of KANs compared to MLPs, including higher accuracy and faster neural scaling, stronger interpretability and generalizability, and lower parameter counts. First, we quantitatively demonstrated these improvements in a comprehensive study of the classical Lotka-Volterra predator-prey model. We then showcased the KAN-ODE framework's ability to learn symbolic source terms and complete solution profiles in higher-complexity and data-lean scenarios including wave propagation and shock formation, the complex Schr\"odinger equation, and the Allen-Cahn phase separation equation. The successful training of KAN-ODEs, and their improved performance compared to traditional Neural ODEs, implies significant potential in leveraging this novel network architecture in myriad scientific machine learning applications for discovering hidden physics and predicting dynamic evolution.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.