Formal Verification of Object Detection

Authors: Avraham Raviv, Yizhak Y. Elboher, Michelle Aluf-Medina, Yael Leibovich Weiss, Omer Cohen, Roy Assa, Guy Katz, Hillel Kugler

License: CC BY-NC-SA 4.0

Abstract: Deep Neural Networks (DNNs) are ubiquitous in real-world applications, yet they remain vulnerable to errors and adversarial attacks. This work tackles the challenge of applying formal verification to ensure the safety of computer vision models, extending verification beyond image classification to object detection. We propose a general formulation for certifying the robustness of object detection models using formal verification and outline implementation strategies compatible with state-of-the-art verification tools. Our approach enables the application of these tools, originally designed for verifying classification models, to object detection. We define various attacks for object detection, illustrating the diverse ways adversarial inputs can compromise neural network outputs. Our experiments, conducted on several common datasets and networks, reveal potential errors in object detection models, highlighting system vulnerabilities and emphasizing the need for expanding formal verification to these new domains. This work paves the way for further research in integrating formal verification across a broader range of computer vision applications.

Submitted to arXiv on 01 Jul. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.