Explainability of Machine Learning Models under Missing Data

Authors: Tuan L. Vo, Thu Nguyen, Hugo L. Hammer, Michael A. Riegler, Pal Halvorsen

License: CC BY-SA 4.0

Abstract: Missing data is a prevalent issue that can significantly impair model performance and interpretability. This paper briefly summarizes the development of the field of missing data with respect to Explainable Artificial Intelligence and experimentally investigates the effects of various imputation methods on the calculation of Shapley values, a popular technique for interpreting complex machine learning models. We compare different imputation strategies and assess their impact on feature importance and interaction as determined by Shapley values. Moreover, we also theoretically analyze the effects of missing values on Shapley values. Importantly, our findings reveal that the choice of imputation method can introduce biases that could lead to changes in the Shapley values, thereby affecting the interpretability of the model. Moreover, and that a lower test prediction mean square error (MSE) may not imply a lower MSE in Shapley values and vice versa. Also, while Xgboost is a method that could handle missing data directly, using Xgboost directly on missing data can seriously affect interpretability compared to imputing the data before training Xgboost. This study provides a comprehensive evaluation of imputation methods in the context of model interpretation, offering practical guidance for selecting appropriate techniques based on dataset characteristics and analysis objectives. The results underscore the importance of considering imputation effects to ensure robust and reliable insights from machine learning models.

Submitted to arXiv on 29 Jun. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.