IoT-Based Preventive Mental Health Using Knowledge Graphs and Standards for Better Well-Being
Authors: Amelie Gyrard, Seyedali Mohammadi, Manas Gaur, Antonio Kung
Abstract: Sustainable Development Goals (SDGs) give the UN a road map for development with Agenda 2030 as a target. SDG3 "Good Health and Well-Being" ensures healthy lives and promotes well-being for all ages. Digital technologies can support SDG3. Burnout and even depression could be reduced by encouraging better preventive health. Due to the lack of patient knowledge and focus to take care of their health, it is necessary to help patients before it is too late. New trends such as positive psychology and mindfulness are highly encouraged in the USA. Digital Twins (DTs) can help with the continuous monitoring of emotion using physiological signals (e.g., collected via wearables). DTs facilitate monitoring and provide constant health insight to improve quality of life and well-being with better personalization. Healthcare DTs challenges are standardizing data formats, communication protocols, and data exchange mechanisms. As an example, ISO has the ISO/IEC JTC 1/SC 41 Internet of Things (IoT) and DTs Working Group, with standards such as "ISO/IEC 21823-3:2021 IoT - Interoperability for IoT Systems - Part 3 Semantic interoperability", "ISO/IEC CD 30178 - IoT - Data format, value and coding". To achieve those data integration and knowledge challenges, we designed the Mental Health Knowledge Graph (ontology and dataset) to boost mental health. As an example, explicit knowledge is described such as chocolate contains magnesium which is recommended for depression. The Knowledge Graph (KG) acquires knowledge from ontology-based mental health projects classified within the LOV4IoT ontology catalog (Emotion, Depression, and Mental Health). Furthermore, the KG is mapped to standards when possible. Standards from ETSI SmartM2M can be used such as SAREF4EHAW to represent medical devices and sensors, but also ITU/WHO, ISO, W3C, NIST, and IEEE standards relevant to mental health can be considered.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.