Unveiling the Hidden Structure of Self-Attention via Kernel Principal Component Analysis

Authors: Rachel S. Y. Teo, Tan M. Nguyen

33 pages, 5 figures, 12 tables
License: CC BY 4.0

Abstract: The remarkable success of transformers in sequence modeling tasks, spanning various applications in natural language processing and computer vision, is attributed to the critical role of self-attention. Similar to the development of most deep learning models, the construction of these attention mechanisms rely on heuristics and experience. In our work, we derive self-attention from kernel principal component analysis (kernel PCA) and show that self-attention projects its query vectors onto the principal component axes of its key matrix in a feature space. We then formulate the exact formula for the value matrix in self-attention, theoretically and empirically demonstrating that this value matrix captures the eigenvectors of the Gram matrix of the key vectors in self-attention. Leveraging our kernel PCA framework, we propose Attention with Robust Principal Components (RPC-Attention), a novel class of robust attention that is resilient to data contamination. We empirically demonstrate the advantages of RPC-Attention over softmax attention on the ImageNet-1K object classification, WikiText-103 language modeling, and ADE20K image segmentation task.

Submitted to arXiv on 19 Jun. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.