Evaluating ChatGPT-4 Vision on Brazil's National Undergraduate Computer Science Exam
Authors: Nabor C. Mendonça
Abstract: The recent integration of visual capabilities into Large Language Models (LLMs) has the potential to play a pivotal role in science and technology education, where visual elements such as diagrams, charts, and tables are commonly used to improve the learning experience. This study investigates the performance of ChatGPT-4 Vision, OpenAI's most advanced visual model at the time the study was conducted, on the Bachelor in Computer Science section of Brazil's 2021 National Undergraduate Exam (ENADE). By presenting the model with the exam's open and multiple-choice questions in their original image format and allowing for reassessment in response to differing answer keys, we were able to evaluate the model's reasoning and self-reflecting capabilities in a large-scale academic assessment involving textual and visual content. ChatGPT-4 Vision significantly outperformed the average exam participant, positioning itself within the top 10 best score percentile. While it excelled in questions that incorporated visual elements, it also encountered challenges with question interpretation, logical reasoning, and visual acuity. The involvement of an independent expert panel to review cases of disagreement between the model and the answer key revealed some poorly constructed questions containing vague or ambiguous statements, calling attention to the critical need for improved question design in future exams. Our findings suggest that while ChatGPT-4 Vision shows promise in multimodal academic evaluations, human oversight remains crucial for verifying the model's accuracy and ensuring the fairness of high-stakes educational exams. The paper's research materials are publicly available at https://github.com/nabormendonca/gpt-4v-enade-cs-2021.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.