GraphWeaver: Billion-Scale Cybersecurity Incident Correlation

Authors: Scott Freitas, Amir Gharib

Abstract: In the dynamic landscape of large enterprise cybersecurity, accurately and efficiently correlating billions of security alerts into comprehensive incidents is a substantial challenge. Traditional correlation techniques often struggle with maintenance, scaling, and adapting to emerging threats and novel sources of telemetry. We introduce GraphWeaver, an industry-scale framework that shifts the traditional incident correlation process to a data-optimized, geo-distributed graph based approach. GraphWeaver introduces a suite of innovations tailored to handle the complexities of correlating billions of shared evidence alerts across hundreds of thousands of enterprises. Key among these innovations are a geo-distributed database and PySpark analytics engine for large-scale data processing, a minimum spanning tree algorithm to optimize correlation storage, integration of security domain knowledge and threat intelligence, and a human-in-the-loop feedback system to continuously refine key correlation processes and parameters. GraphWeaver is integrated into the Microsoft Defender XDR product and deployed worldwide, handling billions of correlations with a 99% accuracy rate, as confirmed by customer feedback and extensive investigations by security experts. This integration has not only maintained high correlation accuracy but reduces traditional correlation storage requirements by 7.4x. We provide an in-depth overview of the key design and operational features of GraphWeaver, setting a precedent as the first cybersecurity company to openly discuss these critical capabilities at this level of depth.

Submitted to arXiv on 03 Jun. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.