Guiding and Diversifying LLM-Based Story Generation via Answer Set Programming

Authors: Phoebe J. Wang, Max Kreminski

License: CC BY-NC-SA 4.0

Abstract: Instruction-tuned large language models (LLMs) are capable of generating stories in response to open-ended user requests, but the resulting stories tend to be limited in their diversity. Older, symbolic approaches to story generation (such as planning) can generate substantially more diverse plot outlines, but are limited to producing stories that recombine a fixed set of hand-engineered character action templates. Can we combine the strengths of these approaches while mitigating their weaknesses? We propose to do so by using a higher-level and more abstract symbolic specification of high-level story structure -- implemented via answer set programming (ASP) -- to guide and diversify LLM-based story generation. Via semantic similarity analysis, we demonstrate that our approach produces more diverse stories than an unguided LLM, and via code excerpts, we demonstrate the improved compactness and flexibility of ASP-based outline generation over full-fledged narrative planning.

Submitted to arXiv on 01 Jun. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.