Financial Table Extraction in Image Documents

Authors: William Watson, Bo Liu

License: CC BY 4.0

Abstract: Table extraction has long been a pervasive problem in financial services. This is more challenging in the image domain, where content is locked behind cumbersome pixel format. Luckily, advances in deep learning for image segmentation, OCR, and sequence modeling provides the necessary heavy lifting to achieve impressive results. This paper presents an end-to-end pipeline for identifying, extracting and transcribing tabular content in image documents, while retaining the original spatial relations with high fidelity.

Submitted to arXiv on 18 Mar. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.