APACE: Agile and Perception-Aware Trajectory Generation for Quadrotor Flights
Authors: Xinyi Chen, Yichen Zhang, Boyu Zhou, Shaojie Shen
Abstract: Various perception-aware planning approaches have attempted to enhance the state estimation accuracy during maneuvers, while the feature matchability among frames, a crucial factor influencing estimation accuracy, has often been overlooked. In this paper, we present APACE, an Agile and Perception-Aware trajeCtory gEneration framework for quadrotors aggressive flight, that takes into account feature matchability during trajectory planning. We seek to generate a perception-aware trajectory that reduces the error of visual-based estimator while satisfying the constraints on smoothness, safety, agility and the quadrotor dynamics. The perception objective is achieved by maximizing the number of covisible features while ensuring small enough parallax angles. Additionally, we propose a differentiable and accurate visibility model that allows decomposition of the trajectory planning problem for efficient optimization resolution. Through validations conducted in both a photorealistic simulator and real-world experiments, we demonstrate that the trajectories generated by our method significantly improve state estimation accuracy, with root mean square error (RMSE) reduced by up to an order of magnitude. The source code will be released to benefit the community.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.