Neural Network Learning and Quantum Gravity
Authors: Stefano Lanza
Abstract: The landscape of low-energy effective field theories stemming from string theory is too vast for a systematic exploration. However, the meadows of the string landscape may be fertile ground for the application of machine learning techniques. Employing neural network learning may allow for inferring novel, undiscovered properties that consistent theories in the landscape should possess, or checking conjectural statements about alleged characteristics thereof. The aim of this work is to describe to what extent the string landscape can be explored with neural network-based learning. Our analysis is motivated by recent studies that show that the string landscape is characterized by finiteness properties, emerging from its underlying tame, o-minimal structures. Indeed, employing these results, we illustrate that any low-energy effective theory of string theory is endowed with certain statistical learnability properties. Consequently, several learning problems therein formulated, including interpolations and multi-class classification problems, can be concretely addressed with machine learning, delivering results with sufficiently high accuracy.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.