Unified View of Grokking, Double Descent and Emergent Abilities: A Perspective from Circuits Competition
Authors: Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, Maosong Sun
Abstract: Recent studies have uncovered intriguing phenomena in deep learning, such as grokking, double descent, and emergent abilities in large language models, which challenge human intuition and are crucial for a deeper understanding of neural models. In this paper, we present a comprehensive framework that provides a unified view of these three phenomena, focusing on the competition between memorization and generalization circuits. This approach, initially employed to explain grokking, is extended in our work to encompass a wider range of model sizes and training data volumes. Our framework delineates four distinct training dynamics, each depending on varying combinations of model size and training data quantity. Utilizing this framework, we provide a detailed analysis of the double descent phenomenon and propose two verifiable predictions regarding its occurrence, both substantiated by our experimental results. Moreover, we expand our framework to the multi-task learning paradigm, demonstrating how algorithm tasks can be turned into emergent abilities. This offers a novel perspective to understand emergent abilities in Large Language Models.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.