Agricultural Object Detection with You Look Only Once (YOLO) Algorithm: A Bibliometric and Systematic Literature Review
Authors: Chetan M Badgujar, Alwin Poulose, Hao Gan
Abstract: Vision is a major component in several digital technologies and tools used in agriculture. The object detector, You Look Only Once (YOLO), has gained popularity in agriculture in a relatively short span due to its state-of-the-art performance. YOLO offers real-time detection with good accuracy and is implemented in various agricultural tasks, including monitoring, surveillance, sensing, automation, and robotics. The research and application of YOLO in agriculture are accelerating rapidly but are fragmented and multidisciplinary. Moreover, the performance characteristics (i.e., accuracy, speed, computation) of the object detector influence the rate of technology implementation and adoption in agriculture. Thus, the study aims to collect extensive literature to document and critically evaluate the advances and application of YOLO for agricultural object recognition. First, we conducted a bibliometric review of 257 articles to understand the scholarly landscape of YOLO in agricultural domain. Secondly, we conducted a systematic review of 30 articles to identify current knowledge, gaps, and modifications in YOLO for specific agricultural tasks. The study critically assesses and summarizes the information on YOLO's end-to-end learning approach, including data acquisition, processing, network modification, integration, and deployment. We also discussed task-specific YOLO algorithm modification and integration to meet the agricultural object or environment-specific challenges. In general, YOLO-integrated digital tools and technologies show the potential for real-time, automated monitoring, surveillance, and object handling to reduce labor, production cost, and environmental impact while maximizing resource efficiency. The study provides detailed documentation and significantly advances the existing knowledge on applying YOLO in agriculture, which can greatly benefit the scientific community.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.