QED corrections to the thermal neutrino interaction rate
Authors: G. Jackson, M. Laine
Abstract: Motivated by precision computations of neutrino decoupling at MeV temperatures, we show how QED corrections to the thermal neutrino interaction rate can be related to the electron-positron spectral function as well as an effective $\bar{\nu}\nu\gamma$ vertex. The spectral function is needed both in a timelike and in a spacelike domain, and for both of its physical polarization states (transverse and longitudinal with respect to spatial momentum). Incorporating an NLO evaluation of this spectral function, an estimate of the $\bar{\nu}\nu\gamma$ vertex, and HTL resummation of scatterings mediated by soft Bose-enhanced $t$-channel photons, we compute the interaction rate as a function of the neutrino momentum and flavour. Effects on the $ -(0...2)\%$ level are found, noticeably smaller than a previous estimate of a related quantity.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.