Adaptive Feature Selection for No-Reference Image Quality Assessment using Contrastive Mitigating Semantic Noise Sensitivity

Authors: Xudong Li, Timin Gao, Xiawu Zheng, Runze Hu, Jingyuan Zheng, Yunhang Shen, Ke Li, Yutao Liu, Pingyang Dai, Yan Zhang, Rongrong Ji

Abstract: The current state-of-the-art No-Reference Image Quality Assessment (NR-IQA) methods typically use feature extraction in upstream backbone networks, which assumes that all extracted features are relevant. However, we argue that not all features are beneficial, and some may even be harmful, necessitating careful selection. Empirically, we find that many image pairs with small feature spatial distances can have vastly different quality scores. To address this issue, we propose a Quality-Aware Feature Matching IQA metric(QFM-IQM) that employs contrastive learning to remove harmful features from the upstream task. Specifically, our approach enhances the semantic noise distinguish capabilities of neural networks by comparing image pairs with similar semantic features but varying quality scores and adaptively adjusting the upstream task's features by introducing disturbance. Furthermore, we utilize a distillation framework to expand the dataset and improve the model's generalization ability. Our approach achieves superior performance to the state-of-the-art NR-IQA methods on 8 standard NR-IQA datasets, achieving PLCC values of 0.932 (vs. 0.908 in TID2013) and 0.913 (vs. 0.894 in LIVEC).

Submitted to arXiv on 11 Dec. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.