Street TryOn: Learning In-the-Wild Virtual Try-On from Unpaired Person Images
Authors: Aiyu Cui, Jay Mahajan, Viraj Shah, Preeti Gomathinayagam, Chang Liu, Svetlana Lazebnik
Abstract: Most virtual try-on research is motivated to serve the fashion business by generating images to demonstrate garments on studio models at a lower cost. However, virtual try-on should be a broader application that also allows customers to visualize garments on themselves using their own casual photos, known as in-the-wild try-on. Unfortunately, the existing methods, which achieve plausible results for studio try-on settings, perform poorly in the in-the-wild context. This is because these methods often require paired images (garment images paired with images of people wearing the same garment) for training. While such paired data is easy to collect from shopping websites for studio settings, it is difficult to obtain for in-the-wild scenes. In this work, we fill the gap by (1) introducing a StreetTryOn benchmark to support in-the-wild virtual try-on applications and (2) proposing a novel method to learn virtual try-on from a set of in-the-wild person images directly without requiring paired data. We tackle the unique challenges, including warping garments to more diverse human poses and rendering more complex backgrounds faithfully, by a novel DensePose warping correction method combined with diffusion-based conditional inpainting. Our experiments show competitive performance for standard studio try-on tasks and SOTA performance for street try-on and cross-domain try-on tasks.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.