A U-turn on Double Descent: Rethinking Parameter Counting in Statistical Learning

Authors: Alicia Curth, Alan Jeffares, Mihaela van der Schaar

To appear in the Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023)

Abstract: Conventional statistical wisdom established a well-understood relationship between model complexity and prediction error, typically presented as a U-shaped curve reflecting a transition between under- and overfitting regimes. However, motivated by the success of overparametrized neural networks, recent influential work has suggested this theory to be generally incomplete, introducing an additional regime that exhibits a second descent in test error as the parameter count p grows past sample size n - a phenomenon dubbed double descent. While most attention has naturally been given to the deep-learning setting, double descent was shown to emerge more generally across non-neural models: known cases include linear regression, trees, and boosting. In this work, we take a closer look at evidence surrounding these more classical statistical machine learning methods and challenge the claim that observed cases of double descent truly extend the limits of a traditional U-shaped complexity-generalization curve therein. We show that once careful consideration is given to what is being plotted on the x-axes of their double descent plots, it becomes apparent that there are implicitly multiple complexity axes along which the parameter count grows. We demonstrate that the second descent appears exactly (and only) when and where the transition between these underlying axes occurs, and that its location is thus not inherently tied to the interpolation threshold p=n. We then gain further insight by adopting a classical nonparametric statistics perspective. We interpret the investigated methods as smoothers and propose a generalized measure for the effective number of parameters they use on unseen examples, using which we find that their apparent double descent curves indeed fold back into more traditional convex shapes - providing a resolution to tensions between double descent and statistical intuition.

Submitted to arXiv on 29 Oct. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.