Examining the Influence of Job Satisfaction on Individual Innovation and Its Components: Considering the Moderating Role of Technostress

Authors: Fatemeh Daneshmandi, Hassan Hessari, Tahmineh Nategh, Ali Bai

13 pages, 2 figures, 4 tables

Abstract: Background: Employee innovation is a crucial aspect of organizations in the current era. Therefore, studying the factors influencing individual innovation is vital and unavoidable. Undoubtedly, job satisfaction is a significant variable in management sciences. Nowadays, all organizations are interconnected with technology. Objective: This research explores the relationship between job satisfaction and individual innovation, including its components, and the moderating role of technostress. Research Method: This study, in terms of purpose, is applied, and in terms of data collection method, it is a descriptive survey. Data collection tools included the Technostress Inventory by Tarafdar and colleagues (2007), Janssen's Individual Innovation Questionnaire (2000), and the Job Satisfaction Survey (JSS) by Spector (1994). The validity and reliability of these questionnaires were confirmed. The sample size for this study was 215, and data analysis was performed using SPSS and SMART-PLS software. Findings: Job satisfaction has a significant and positive relationship with individual innovation, idea generation, idea promotion, and idea implementation. Technostress moderates the relationship between job satisfaction and individual innovation, as well as idea generation and idea promotion. However, technostress does not play a moderating role in the relationship between job satisfaction and idea implementation. Conclusion: Based on the obtained results, organizations should take necessary measures to increase job satisfaction and reduce technostress among their employees.

Submitted to arXiv on 20 Oct. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.