Where are the Water Worlds? Identifying the Exo-water-worlds Using Models of Planet Formation and Atmospheric Evolution
Authors: Aritra Chakrabarty, Gijs D. Mulders
Abstract: Planet formation models suggest that the small exoplanets that migrate from beyond the snowline of the protoplanetary disk likely contain water-ice-rich cores ($\sim 50\%$ by mass), also known as the water worlds. While the observed radius valley of the Kepler planets is well explained with the atmospheric dichotomy of the rocky planets, precise measurements of mass and radius of the transiting planets hint at the existence of these water worlds. However, observations cannot confirm the core compositions of those planets owing to the degeneracy between the density of a bare water-ice-rich planet and the bulk density of a rocky planet with a thin atmosphere. We combine different formation models from the Genesis library with atmospheric escape models, such as photo-evaporation and impact stripping, to simulate planetary systems consistent with the observed radius valley. We then explore the possibility of water worlds being present in the currently observed sample by comparing them with the simulated planets in the mass-radius-orbital period space. We find that the migration models suggest $\gtrsim 10\%$ and $\gtrsim 20\%$ of the bare planets, i.e. planets without primordial H/He atmospheres, to be water-ice-rich around G- and M-type host stars respectively, consistent with the mass-radius distributions of the observed planets. However, most of the water worlds are predicted to be outside a period of 10 days. A unique identification of water worlds through radial velocity and transmission spectroscopy is likely to be more successful when targeting such planets with longer orbital periods.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.