Targeted Adversarial Attacks on Generalizable Neural Radiance Fields

Authors: Andras Horvath, Csaba M. Jozsa

License: CC BY 4.0

Abstract: Neural Radiance Fields (NeRFs) have recently emerged as a powerful tool for 3D scene representation and rendering. These data-driven models can learn to synthesize high-quality images from sparse 2D observations, enabling realistic and interactive scene reconstructions. However, the growing usage of NeRFs in critical applications such as augmented reality, robotics, and virtual environments could be threatened by adversarial attacks. In this paper we present how generalizable NeRFs can be attacked by both low-intensity adversarial attacks and adversarial patches, where the later could be robust enough to be used in real world applications. We also demonstrate targeted attacks, where a specific, predefined output scene is generated by these attack with success.

Submitted to arXiv on 05 Oct. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.