Expert enhanced dynamic time warping based anomaly detection
Authors: Matej Kloska, Gabriela Grmanova, Viera Rozinajova
Abstract: Dynamic time warping (DTW) is a well-known algorithm for time series elastic dissimilarity measure. Its ability to deal with non-linear time distortions makes it helpful in variety of data mining tasks. Such a task is also anomaly detection which attempts to reveal unexpected behaviour without false detection alarms. In this paper, we propose a novel anomaly detection method named Expert enhanced dynamic time warping anomaly detection (E-DTWA). It is based on DTW with additional enhancements involving human-in-the-loop concept. The main benefits of our approach comprise efficient detection, flexible retraining based on strong consideration of the expert's detection feedback while retaining low computational and space complexity.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.