Enhancing OCR Performance through Post-OCR Models: Adopting Glyph Embedding for Improved Correction

Authors: Yung-Hsin Chen, Yuli Zhou

License: CC BY 4.0

Abstract: The study investigates the potential of post-OCR models to overcome limitations in OCR models and explores the impact of incorporating glyph embedding on post-OCR correction performance. In this study, we have developed our own post-OCR correction model. The novelty of our approach lies in embedding the OCR output using CharBERT and our unique embedding technique, capturing the visual characteristics of characters. Our findings show that post-OCR correction effectively addresses deficiencies in inferior OCR models, and glyph embedding enables the model to achieve superior results, including the ability to correct individual words.

Submitted to arXiv on 29 Aug. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.