LLMediator: GPT-4 Assisted Online Dispute Resolution
Authors: Hannes Westermann, Jaromir Savelka, Karim Benyekhlef
Abstract: In this article, we introduce LLMediator, an experimental platform designed to enhance online dispute resolution (ODR) by utilizing capabilities of state-of-the-art large language models (LLMs) such as GPT-4. In the context of high-volume, low-intensity legal disputes, alternative dispute resolution methods such as negotiation and mediation offer accessible and cooperative solutions for laypeople. These approaches can be carried out online on ODR platforms. LLMediator aims to improve the efficacy of such processes by leveraging GPT-4 to reformulate user messages, draft mediator responses, and potentially autonomously engage in the discussions. We present and discuss several features of LLMediator and conduct initial qualitative evaluations, demonstrating the potential for LLMs to support ODR and facilitate amicable settlements. The initial proof of concept is promising and opens up avenues for further research in AI-assisted negotiation and mediation.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.