Convergence of Digitized-Counterdiabatic QAOA: circuit depth versus free parameters

Authors: Mara Vizzuso, Gianluca Passarelli, Giovanni Cantele, Procolo Lucignano

New J. Phys. 26 013002 (2024)
arXiv: 2307.14079v4 - DOI (quant-ph)

Abstract: Recently, Digitized-Counterdiabatic (CD) Quantum Approximate Optimization Algorithm (QAOA) has been proposed to make QAOA converge to the solution of an optimization problem in fewer steps, inspired by Trotterized counterdiabatic driving in continuous-time quantum annealing. In this paper, we critically revisit this approach by focusing on the paradigmatic weighted and unweighted one-dimensional MaxCut problem. We study two variants of QAOA with first and second-order CD corrections. Our results show that, indeed, higher order CD corrections allow for a quicker convergence to the exact solution of the problem at hand by increasing the complexity of the variational cost function. Remarkably, however, the total number of free parameters needed to achieve this result is independent of the particular QAOA variant analyzed.

Submitted to arXiv on 26 Jul. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.