Sports Betting: an application of neural networks and modern portfolio theory to the English Premier League

Authors: Vélez Jiménez, Román Alberto, Lecuanda Ontiveros, José Manuel, Edgar Possani

arXiv: 2307.13807v1 - DOI (q-fin.PM)
License: CC BY-NC-SA 4.0

Abstract: This paper presents a novel approach for optimizing betting strategies in sports gambling by integrating Von Neumann-Morgenstern Expected Utility Theory, deep learning techniques, and advanced formulations of the Kelly Criterion. By combining neural network models with portfolio optimization, our method achieved remarkable profits of 135.8% relative to the initial wealth during the latter half of the 20/21 season of the English Premier League. We explore complete and restricted strategies, evaluating their performance, risk management, and diversification. A deep neural network model is developed to forecast match outcomes, addressing challenges such as limited variables. Our research provides valuable insights and practical applications in the field of sports betting and predictive modeling.

Submitted to arXiv on 11 Jul. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.