Integration of Digital Twin and Federated Learning for Securing Vehicular Internet of Things

Authors: Deepti Gupta, Shafika Showkat Moni, Ali Saman Tosun

License: CC BY 4.0

Abstract: In the present era of advanced technology, the Internet of Things (IoT) plays a crucial role in enabling smart connected environments. This includes various domains such as smart homes, smart healthcare, smart cities, smart vehicles, and many others.With ubiquitous smart connected devices and systems, a large amount of data associated with them is at a prime risk from malicious entities (e.g., users, devices, applications) in these systems. Innovative technologies, including cloud computing, Machine Learning (ML), and data analytics, support the development of anomaly detection models for the Vehicular Internet of Things (V-IoT), which encompasses collaborative automatic driving and enhanced transportation systems. However, traditional centralized anomaly detection models fail to provide better services for connected vehicles due to issues such as high latency, privacy leakage, performance overhead, and model drift. Recently, Federated Learning (FL) has gained significant recognition for its ability to address data privacy concerns in the IoT domain. Digital Twin (DT), proves beneficial in addressing uncertain crises and data security issues by creating a virtual replica that simulates various factors, including traffic trajectories, city policies, and vehicle utilization. However, the effectiveness of a V-IoT DT system heavily relies on the collection of long-term and high-quality data to make appropriate decisions. This paper introduces a Hierarchical Federated Learning (HFL) based anomaly detection model for V-IoT, aiming to enhance the accuracy of the model. Our proposed model integrates both DT and HFL approaches to create a comprehensive system for detecting malicious activities using an anomaly detection model. Additionally, real-world V-IoT use case scenarios are presented to demonstrate the application of the proposed model.

Submitted to arXiv on 25 Jul. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.