The structural properties of multiple populations in the dynamically young globular cluster NGC 2419

Authors: Silvia Onorato, Mario Cadelano, Emanuele Dalessandro, Enrico Vesperini, Barbara Lanzoni, Alessio Mucciarelli

arXiv: 2307.09508v1 - DOI (astro-ph.GA)
Accepted for publication in A&A

Abstract: NGC 2419 is likely the globular cluster (GC) with the lowest dynamical age in the Galaxy. This makes it an extremely interesting target for studying the properties of its multiple populations (MPs), as they have been likely affected only modestly by long-term dynamical evolution effects. Here we present for the first time a detailed analysis of the structural and morphological properties of the MPs along the whole extension of this remote and massive GC by combining high-resolution HST and wide-field ground-based data. In agreement with formation models predicting that second population (SP) stars form in the inner regions of the first population (FP) system, we find that the SP is more centrally concentrated than the FP. This may provide constraints on the relative concentrations of MPs in the cluster early stages of the evolutionary phase driven by two-body relaxation. In addition, we find that the fraction of FP stars is larger than expected from the general trend drawn by Galactic GCs. If, as suggested by a number of studies, NGC 2419 formed in the Sagittarius dwarf galaxy and was later accreted by the Milky Way, we show that the observed FP fraction may be explained as due to the transition of NGC 2419 to a weaker tidal field (its current Galactocentric distance is d_gc~95 kpc) and consequently to a reduced loss rate of FP stars.

Submitted to arXiv on 18 Jul. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.