A Framework for Universality in Physics, Computer Science, and Beyond
Authors: Tomáš Gonda, Tobias Reinhart, Sebastian Stengele, Gemma De les Coves
Abstract: Turing machines and spin models share a notion of universality according to which some simulate all others. Is there a theory of universality that captures this notion? We set up a categorical framework for universality which includes as instances universal Turing machines, universal spin models, NP completeness, top of a preorder, denseness of a subset, and more. By identifying necessary conditions for universality, we show that universal spin models cannot be finite. We also characterize when universality can be distinguished from a trivial one and use it to show that universal Turing machines are non-trivial in this sense. Our framework allows not only to compare universalities within each instance, but also instances themselves. We leverage a Fixed Point Theorem inspired by a result of Lawvere to establish that universality and negation give rise to unreachability (such as uncomputability). As such, this work sets the basis for a unified approach to universality and invites the study of further examples within the framework.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.