Text Simplification of Scientific Texts for Non-Expert Readers

Authors: Björn Engelmann, Fabian Haak, Christin Katharina Kreutz, Narjes Nikzad Khasmakhi, Philipp Schaer

Paper accepted at SimpleText@CLEF'23, 12 pages, 1 Figure, 4 Tables

Abstract: Reading levels are highly individual and can depend on a text's language, a person's cognitive abilities, or knowledge on a topic. Text simplification is the task of rephrasing a text to better cater to the abilities of a specific target reader group. Simplification of scientific abstracts helps non-experts to access the core information by bypassing formulations that require domain or expert knowledge. This is especially relevant for, e.g., cancer patients reading about novel treatment options. The SimpleText lab hosts the simplification of scientific abstracts for non-experts (Task 3) to advance this field. We contribute three runs employing out-of-the-box summarization models (two based on T5, one based on PEGASUS) and one run using ChatGPT with complex phrase identification.

Submitted to arXiv on 07 Jul. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.