RecallM: An Adaptable Memory Mechanism with Temporal Understanding for Large Language Models
Authors: Brandon Kynoch, Hugo Latapie, Dwane van der Sluis
Abstract: Large Language Models (LLMs) have made extraordinary progress in the field of Artificial Intelligence and have demonstrated remarkable capabilities across a large variety of tasks and domains. However, as we venture closer to creating Artificial General Intelligence (AGI) systems, we recognize the need to supplement LLMs with long-term memory to overcome the context window limitation and more importantly, to create a foundation for sustained reasoning, cumulative learning and long-term user interaction. In this paper we propose RecallM, a novel architecture for providing LLMs with an adaptable and updatable long-term memory mechanism. Unlike previous methods, the RecallM architecture is particularly effective at belief updating and maintaining a temporal understanding of the knowledge provided to it. We demonstrate through various experiments the effectiveness of this architecture. Furthermore, through our own temporal understanding and belief updating experiments, we show that RecallM is four times more effective than using a vector database for updating knowledge previously stored in long-term memory. We also demonstrate that RecallM shows competitive performance on general question-answering and in-context learning tasks.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.