Relation-aware graph structure embedding with co-contrastive learning for drug-drug interaction prediction
Authors: Mengying Jiang, Guizhong Liu, Biao Zhao, Yuanchao Su, Weiqiang Jin
Abstract: Relation-aware graph structure embedding is promising for predicting multi-relational drug-drug interactions (DDIs). Typically, most existing methods begin by constructing a multi-relational DDI graph and then learning relation-aware graph structure embeddings (RaGSEs) of drugs from the DDI graph. Nevertheless, most existing approaches are usually limited in learning RaGSEs of new drugs, leading to serious over-fitting when the test DDIs involve such drugs. To alleviate this issue, we propose a novel DDI prediction method based on relation-aware graph structure embedding with co-contrastive learning, RaGSECo. The proposed RaGSECo constructs two heterogeneous drug graphs: a multi-relational DDI graph and a multi-attribute drug-drug similarity (DDS) graph. The two graphs are used respectively for learning and propagating the RaGSEs of drugs, aiming to ensure all drugs, including new ones, can possess effective RaGSEs. Additionally, we present a novel co-contrastive learning module to learn drug-pairs (DPs) representations. This mechanism learns DP representations from two distinct views (interaction and similarity views) and encourages these views to supervise each other collaboratively to obtain more discriminative DP representations. We evaluate the effectiveness of our RaGSECo on three different tasks using two real datasets. The experimental results demonstrate that RaGSECo outperforms existing state-of-the-art prediction methods.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.