Towards Real Smart Apps: Investigating Human-AI Interactions in Smartphone On-Device AI Apps
Authors: Jason Ching Yuen Siu, Jieshan Chen, Yujin Huang, Zhenchang Xing, Chunyang Chen
Abstract: With the emergence of deep learning techniques, smartphone apps are now embedded on-device AI features for enabling advanced tasks like speech translation, to attract users and increase market competitiveness. A good interaction design is important to make an AI feature usable and understandable. However, AI features have their unique challenges like sensitiveness to the input, dynamic behaviours and output uncertainty. Existing guidelines and tools either do not cover AI features or consider mobile apps which are confirmed by our informal interview with professional designers. To address these issues, we conducted the first empirical study to explore user-AI-interaction in mobile apps. We aim to understand the status of on-device AI usage by investigating 176 AI apps from 62,822 apps. We identified 255 AI features and summarised 759 implementations into three primary interaction pattern types. We further implemented our findings into a multi-faceted search-enabled gallery. The results of the user study demonstrate the usefulness of our findings.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.