Coagulation-Fragmentation Equilibrium for Charged Dust: Abundance of Submicron Grains Increases Dramatically in Protoplanetary Disks

Authors: Vitaly Akimkin, Alexei V. Ivlev, Paola Caselli, Munan Gong, Kedron Silsbee

arXiv: 2306.16408v1 - DOI (astro-ph.SR)
accepted for publication in ApJ
License: CC BY 4.0

Abstract: Dust coagulation in protoplanetary disks is not straightforward and is subject to several slow-down mechanisms, such as bouncing, fragmentation and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-size grains are small and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-size grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study a combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation-fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of sub-micron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities $\sim 1$ m s$^{-1}$, macroscopic grains are completely destroyed.

Submitted to arXiv on 28 Jun. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.