Assessing Dataset Quality Through Decision Tree Characteristics in Autoencoder-Processed Spaces
Authors: Szymon Mazurek, Maciej Wielgosz
Abstract: In this paper, we delve into the critical aspect of dataset quality assessment in machine learning classification tasks. Leveraging a variety of nine distinct datasets, each crafted for classification tasks with varying complexity levels, we illustrate the profound impact of dataset quality on model training and performance. We further introduce two additional datasets designed to represent specific data conditions - one maximizing entropy and the other demonstrating high redundancy. Our findings underscore the importance of appropriate feature selection, adequate data volume, and data quality in achieving high-performing machine learning models. To aid researchers and practitioners, we propose a comprehensive framework for dataset quality assessment, which can help evaluate if the dataset at hand is sufficient and of the required quality for specific tasks. This research offers valuable insights into data assessment practices, contributing to the development of more accurate and robust machine learning models.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.