Analyzing scRNA-seq data by CCP-assisted UMAP and t-SNE
Authors: Yuta Hozumi, Gu-Wei Wei
Abstract: Single-cell RNA sequencing (scRNA-seq) is widely used to reveal heterogeneity in cells, which has given us insights into cell-cell communication, cell differentiation, and differential gene expression. However, analyzing scRNA-seq data is a challenge due to sparsity and the large number of genes involved. Therefore, dimensionality reduction and feature selection are important for removing spurious signals and enhancing downstream analysis. Correlated clustering and projection (CCP) was recently introduced as an effective method for preprocessing scRNA-seq data. CCP utilizes gene-gene correlations to partition the genes and, based on the partition, employs cell-cell interactions to obtain super-genes. Because CCP is a data-domain approach that does not require matrix diagonalization, it can be used in many downstream machine learning tasks. In this work, we utilize CCP as an initialization tool for uniform manifold approximation and projection (UMAP) and t-distributed stochastic neighbor embedding (t-SNE). By using eight publicly available datasets, we have found that CCP significantly improves UMAP and t-SNE visualization and dramatically improve their accuracy.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.