Intrusion Detection: A Deep Learning Approach
Authors: Ishaan Shivhare, Joy Purohit, Vinay Jogani, Samina Attari, Dr. Madhav Chandane
Abstract: Network intrusions are a significant problem in all industries today. A critical part of the solution is being able to effectively detect intrusions. With recent advances in artificial intelligence, current research has begun adopting deep learning approaches for intrusion detection. Current approaches for multi-class intrusion detection include the use of a deep neural network. However, it fails to take into account spatial relationships between the data objects and long term dependencies present in the dataset. The paper proposes a novel architecture to combat intrusion detection that has a Convolutional Neural Network (CNN) module, along with a Long Short Term Memory(LSTM) module and with a Support Vector Machine (SVM) classification function. The analysis is followed by a comparison of both conventional machine learning techniques and deep learning methodologies, which highlights areas that could be further explored.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.