Lost in Translation: Large Language Models in Non-English Content Analysis

Authors: Gabriel Nicholas, Aliya Bhatia

50 pages, 4 figures
License: CC BY 4.0

Abstract: In recent years, large language models (e.g., Open AI's GPT-4, Meta's LLaMa, Google's PaLM) have become the dominant approach for building AI systems to analyze and generate language online. However, the automated systems that increasingly mediate our interactions online -- such as chatbots, content moderation systems, and search engines -- are primarily designed for and work far more effectively in English than in the world's other 7,000 languages. Recently, researchers and technology companies have attempted to extend the capabilities of large language models into languages other than English by building what are called multilingual language models. In this paper, we explain how these multilingual language models work and explore their capabilities and limits. Part I provides a simple technical explanation of how large language models work, why there is a gap in available data between English and other languages, and how multilingual language models attempt to bridge that gap. Part II accounts for the challenges of doing content analysis with large language models in general and multilingual language models in particular. Part III offers recommendations for companies, researchers, and policymakers to keep in mind when considering researching, developing and deploying large and multilingual language models.

Submitted to arXiv on 12 Jun. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.