Nonparametric Identification and Estimation of Earnings Dynamics using a Hidden Markov Model: Evidence from the PSID

Authors: Tong Zhou

License: CC BY 4.0

Abstract: This paper presents a hidden Markov model designed to investigate the complex nature of earnings persistence. The proposed model assumes that the residuals of log-earnings consist of a persistent component and a transitory component, both following general Markov processes. Nonparametric identification is achieved through spectral decomposition of linear operators, and a modified stochastic EM algorithm is introduced for model estimation. Applying the framework to the Panel Study of Income Dynamics (PSID) dataset, we find that the earnings process displays nonlinear persistence, conditional skewness, and conditional kurtosis. Additionally, the transitory component is found to possess non-Gaussian properties, resulting in a significantly asymmetric distributional impact when high-earning households face negative shocks or low-earning households encounter positive shocks. Our empirical findings also reveal the presence of ARCH effects in earnings at horizons ranging from 2 to 8 years, further highlighting the complex dynamics of earnings persistence.

Submitted to arXiv on 25 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.