Assessing the Criticality of Longitudinal Driving Scenarios using Time Series Data

Authors: Nico Schick

Abstract: Unfortunately, many people die in car accidents. To reduce these accidents, cars are equipped with driving safety systems. With autonomous vehicles, the driver's behavior becomes irrelevant as the car drives autonomously. All autonomous driving algorithms must undergo extensive testing and validation, especially for safety-critical scenarios. Therefore, the detection of safety-critical driving scenarios is essential for autonomous vehicles. This publication describes safety indicator metrics based on time series covering longitudinal driving data to detect safety-critical driving scenarios.

Submitted to arXiv on 29 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.