Back Translation for Speech-to-text Translation Without Transcripts

Authors: Qingkai Fang, Yang Feng

ACL 2023 main conference
License: CC BY-NC-ND 4.0

Abstract: The success of end-to-end speech-to-text translation (ST) is often achieved by utilizing source transcripts, e.g., by pre-training with automatic speech recognition (ASR) and machine translation (MT) tasks, or by introducing additional ASR and MT data. Unfortunately, transcripts are only sometimes available since numerous unwritten languages exist worldwide. In this paper, we aim to utilize large amounts of target-side monolingual data to enhance ST without transcripts. Motivated by the remarkable success of back translation in MT, we develop a back translation algorithm for ST (BT4ST) to synthesize pseudo ST data from monolingual target data. To ease the challenges posed by short-to-long generation and one-to-many mapping, we introduce self-supervised discrete units and achieve back translation by cascading a target-to-unit model and a unit-to-speech model. With our synthetic ST data, we achieve an average boost of 2.3 BLEU on MuST-C En-De, En-Fr, and En-Es datasets. More experiments show that our method is especially effective in low-resource scenarios.

Submitted to arXiv on 15 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.