The Case Records of ChatGPT: Language Models and Complex Clinical Questions
Authors: Timothy Poterucha, Pierre Elias, Christopher M. Haggerty
Abstract: Background: Artificial intelligence language models have shown promise in various applications, including assisting with clinical decision-making as demonstrated by strong performance of large language models on medical licensure exams. However, their ability to solve complex, open-ended cases, which may be representative of clinical practice, remains unexplored. Methods: In this study, the accuracy of large language AI models GPT4 and GPT3.5 in diagnosing complex clinical cases was investigated using published Case Records of the Massachusetts General Hospital. A total of 50 cases requiring a diagnosis and diagnostic test published from January 1, 2022 to April 16, 2022 were identified. For each case, models were given a prompt requesting the top three specific diagnoses and associated diagnostic tests, followed by case text, labs, and figure legends. Model outputs were assessed in comparison to the final clinical diagnosis and whether the model-predicted test would result in a correct diagnosis. Results: GPT4 and GPT3.5 accurately provided the correct diagnosis in 26% and 22% of cases in one attempt, and 46% and 42% within three attempts, respectively. GPT4 and GPT3.5 provided a correct essential diagnostic test in 28% and 24% of cases in one attempt, and 44% and 50% within three attempts, respectively. No significant differences were found between the two models, and multiple trials with identical prompts using the GPT3.5 model provided similar results. Conclusions: In summary, these models demonstrate potential usefulness in generating differential diagnoses but remain limited in their ability to provide a single unifying diagnosis in complex, open-ended cases. Future research should focus on evaluating model performance in larger datasets of open-ended clinical challenges and exploring potential human-AI collaboration strategies to enhance clinical decision-making.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.