ReMask: A Robust Information-Masking Approach for Domain Counterfactual Generation

Authors: Pengfei Hong, Rishabh Bhardwaj, Navonil Majumdar, Somak Aditya, Soujanya Poria

12 pages, 1 figure, 8 tables, ACL 2023 Long Paper (Findings)
License: CC BY 4.0

Abstract: Domain shift is a big challenge in NLP, thus, many approaches resort to learning domain-invariant features to mitigate the inference phase domain shift. Such methods, however, fail to leverage the domain-specific nuances relevant to the task at hand. To avoid such drawbacks, domain counterfactual generation aims to transform a text from the source domain to a given target domain. However, due to the limited availability of data, such frequency-based methods often miss and lead to some valid and spurious domain-token associations. Hence, we employ a three-step domain obfuscation approach that involves frequency and attention norm-based masking, to mask domain-specific cues, and unmasking to regain the domain generic context. Our experiments empirically show that the counterfactual samples sourced from our masked text lead to improved domain transfer on 10 out of 12 domain sentiment classification settings, with an average of 2% accuracy improvement over the state-of-the-art for unsupervised domain adaptation (UDA). Further, our model outperforms the state-of-the-art by achieving 1.4% average accuracy improvement in the adversarial domain adaptation (ADA) setting. Moreover, our model also shows its domain adaptation efficacy on a large multi-domain intent classification dataset where it attains state-of-the-art results. We release the codes publicly at \url{https://github.com/declare-lab/remask}.

Submitted to arXiv on 04 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.