Cultivated Wildness: Technodiversity and Wildness in Machines
Authors: Zihao Zhang, Bradley Cantrell
Abstract: This paper investigates the idea of cultivated wildness at the intersection of landscape design and artificial intelligence. The paper posits that contemporary landscape practices should overcome the potentially single understanding on wilderness, and instead explore landscape strategies to cultivate new forms of wild places via ideas and concerns in contemporary Environmental Humanities, Science and Technology Studies, Ecological Sciences, and Landscape Architecture. Drawing cases in environmental engineering, computer science, and landscape architecture research, this paper explores a framework to construct wild places with intelligent machines. In this framework, machines are not understood as a layer of "digital infrastructure" that is used to extend localized human intelligence and agency. Rather machines are conceptualized as active agents who can participate in the intelligence of co-production. Recent developments in cybernetic technologies such as sensing networks, artificial intelligence, and cyberphysical systems can also contribute to establishing the framework. At the heart of this framework is "technodiversity," in parallel with biodiversity, since a singular vision on technological development driven by optimization and efficiency reinforces a monocultural approach that eliminates other possible relationships to construct with the environment. Thus, cultivated wildness is also about recognizing "wildness" in machines.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.