On the Discrete Logarithm Problem for elliptic curves over local fields

Authors: Giuseppe Filippone

11 pages, 1 table, 20 references
License: CC BY-NC-SA 4.0

Abstract: The Discrete Logarithm Problem (DLP) for elliptic curves has been extensively studied since, for instance, it is the core of the security of cryptosystems like Elliptic Curve Cryptography (ECC). In this paper, we present an attack to the DLP for elliptic curves based on its connection to the problem of lifting, by using the exponential map for elliptic curves and its inverse over $ \mathbb{Z} / p^k \mathbb{Z} $. Additionally, we show that hyperelliptic curves are resistant to this attack, meaning that these latter curves offer a higher level of security compared to the classic elliptic curves used in cryptography.

Submitted to arXiv on 27 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.