Transformer-based stereo-aware 3D object detection from binocular images

Authors: Hanqing Sun, Yanwei Pang, Jiale Cao, Jin Xie, Xuelong Li

License: CC BY-NC-SA 4.0

Abstract: Transformers have shown promising progress in various visual object detection tasks, including monocular 2D/3D detection and surround-view 3D detection. More importantly, the attention mechanism in the Transformer model and the image correspondence in binocular stereo are both similarity-based. However, directly applying existing Transformer-based detectors to binocular stereo 3D object detection leads to slow convergence and significant precision drops. We argue that a key cause of this defect is that existing Transformers ignore the stereo-specific image correspondence information. In this paper, we explore the model design of Transformers in binocular 3D object detection, focusing particularly on extracting and encoding the task-specific image correspondence information. To achieve this goal, we present TS3D, a Transformer-based Stereo-aware 3D object detector. In the TS3D, a Disparity-Aware Positional Encoding (DAPE) module is proposed to embed the image correspondence information into stereo features. The correspondence is encoded as normalized sub-pixel-level disparity and is used in conjunction with sinusoidal 2D positional encoding to provide the 3D location information of the scene. To extract enriched multi-scale stereo features, we propose a Stereo Preserving Feature Pyramid Network (SPFPN). The SPFPN is designed to preserve the correspondence information while fusing intra-scale and aggregating cross-scale stereo features. Our proposed TS3D achieves a 41.29% Moderate Car detection average precision on the KITTI test set and takes 88 ms to detect objects from each binocular image pair. It is competitive with advanced counterparts in terms of both precision and inference speed.

Submitted to arXiv on 24 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.