A Survey of Graph Prompting Methods: Techniques, Applications, and Challenges
Authors: Xuansheng Wu, Kaixiong Zhou, Mingchen Sun, Xin Wang, Ninghao Liu
Abstract: The recent "pre-train, prompt, predict training" paradigm has gained popularity as a way to learn generalizable models with limited labeled data. The approach involves using a pre-trained model and a prompting function that applies a template to input samples, adding indicative context and reformulating target tasks as the pre-training task. However, the design of prompts could be a challenging and time-consuming process in complex tasks. The limitation can be addressed by using graph data, as graphs serve as structured knowledge repositories by explicitly modeling the interaction between entities. In this survey, we review prompting methods from the graph perspective, where prompting functions are augmented with graph knowledge. In particular, we introduce the basic concepts of graph prompt learning, organize the existing work of designing graph prompting functions, and describe their applications and future challenges. This survey will bridge the gap between graphs and prompt design to facilitate future methodology development.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.