Probing Graph Representations

Authors: Mohammad Sadegh Akhondzadeh, Vijay Lingam, Aleksandar Bojchevski

20 pages, 12 figures, AISTATS 2023

Abstract: Today we have a good theoretical understanding of the representational power of Graph Neural Networks (GNNs). For example, their limitations have been characterized in relation to a hierarchy of Weisfeiler-Lehman (WL) isomorphism tests. However, we do not know what is encoded in the learned representations. This is our main question. We answer it using a probing framework to quantify the amount of meaningful information captured in graph representations. Our findings on molecular datasets show the potential of probing for understanding the inductive biases of graph-based models. We compare different families of models and show that transformer-based models capture more chemically relevant information compared to models based on message passing. We also study the effect of different design choices such as skip connections and virtual nodes. We advocate for probing as a useful diagnostic tool for evaluating graph-based models.

Submitted to arXiv on 07 Mar. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.