Adaptive Interventions for Global Health: A Case Study of Malaria

Authors: África Periáñez, Andrew Trister, Madhav Nekkar, Ana Fernández del Río, Pedro L. Alonso

Accepted for ICLR 2023 Workshop on Machine Learning and Global Health
License: CC BY 4.0

Abstract: Malaria can be prevented, diagnosed, and treated; however, every year, there are more than 200 million cases and 200.000 preventable deaths. Malaria remains a pressing public health concern in low- and middle-income countries, especially in sub-Saharan Africa. We describe how by means of mobile health applications, machine-learning-based adaptive interventions can strengthen malaria surveillance and treatment adherence, increase testing, measure provider skills and quality of care, improve public health by supporting front-line workers and patients (e.g., by capacity building and encouraging behavioral changes, like using bed nets), reduce test stockouts in pharmacies and clinics and informing public health for policy intervention.

Submitted to arXiv on 03 Mar. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.